n-LINKED FIELDS OF CHARACTERISTIC 2

ADAM CHAPMAN

1. LINKAGE AND OTHER PROPERTIES

To avoid certain problems, we assume throughout the talk that F is nonreal (which goes without saying when char(F) = 2) and that F admits division quaternion algebras.

In this case, u(F) is the maximal dimension of an anisotropic nonsingular quadratic form over *F*. By the assumption, $u(F) \ge 4$.

We say that a field F is *n*-linked when every *n* quaternion algebras over F share a quadratic splitting field. A 2-linked field is thus what is known in the literature as a "linked field".

This notion proved to have connections to other field properties and invariants:

- When *F* is linked, its *u*-invariant is either 4 or 8, and it is 4 if and only if $I_q^3 F = 0$. (Elman & Lam in 1972 for char(*F*) \neq 2 and Chapman & Dolphin in 2017 for char(*F*) = 2, based on some results from Faivre's PhD thesis from 2006.)
- u(F) = 4 if and only if *F* is 3-linked. (Becher, Chapman, Dolphin & Leep in 2018.)

Example 1.1.

- $\mathbb{C}(x, y)$ is 3-linked. (Show argument using C_2 -property)
- $\mathbb{C}((x))((y))((z))$ is 2-linked but not 3-linked.
- $\mathbb{C}(x, y, z)$ is not 2-linked.
- $\mathbb{Q}[i]$ is *n*-linked for any $n \in \mathbb{N}$.
- $\mathbb{F}_p(x)$ is *n*-linked for any $n \in \mathbb{N}$
- $\mathbb{F}_p^{sep}(x, y)$ is 3-linked.

Question 1.2. Does 3-linkage imply n-linkage for any $n \in \mathbb{N}$? And in particular, are $\mathbb{C}(x, y)$ and $\mathbb{F}_p(x, y)$ 4-linked?

2.
$$\mathbb{C}(x, y)$$

The proof that this field is not 4-linked was obtained jointly with Tignol (2019).

Consider the quaternion algebras $Q_1 = (x, y)$, $Q_2 = (x, y + 1)$, $Q_3 = (x + 1, y)$ and $Q_4 = (x, xy + 1)$, and the pure parts of their norm forms $\varphi_1, \varphi_2, \varphi_3, \varphi_4$. If the algebras share a quadratic splitting field, then there exists a solution to the system

ADAM CHAPMAN

 $\varphi_1 = \varphi_2 = \varphi_3 = \varphi_4$. However, then there exists a solution to the underlying system over the residue field F = k(x, y) with respect to the extension of the dyadic valuation from \mathbb{Q} to $\mathbb{C}(x, y)$. But the values the forms represent form F^2 -vectors spaces $V_1 = \text{Sp}\{x, y, xy\}$, $V_2 = \text{Sp}\{x, y + 1, xy\}$, $V_3 = \text{Sp}\{x + 1, y, xy\}$ and $V_4 = \text{Sp}\{x, y, xy + 1\}$, and so these spaces must have a nontrivial intersection, and they don't.

3.
$$\mathbb{F}_2^{sep}(x, y)$$

When one considers the algebras $Q_1 = [x^{-1}, y)$, $Q_2 = [y^{-1}, x)$ and $Q_3 = [x^{-1}y^{-1}, y)$, it is immediate from the intersection of the values of the trace zero elements that the algebras do not share an inseparable field extension of $F = \mathbb{F}_2^{sep}(x, y)$. However, they do share a separable extension. The question is which algebra can we add to obtain a quadruple without a common quadratic splitting field? And more importantly, how do we prove that?

The tool we need turns out to be the *w*-invariant defined by Tignol: $w(D) = \min\{v(\operatorname{Tr}(z)) - v(z) : z \in D\}$. In particular, $w(Q_1) = (\frac{1}{2}, 0)$, $w(Q_2) = (0, \frac{1}{2})$ and $w(Q_3) = (\frac{1}{2}, \frac{1}{2})$. The separable subspaces of Q_1 have *w*-invriant either $(\frac{1}{2}, 0)$ or $(0, \frac{1}{2}) \cdot t$ or $(\frac{1}{2}, \frac{1}{2}) \cdot t$ for some $t \in \mathbb{N}$. The separable subspaces of Q_2 have *w*-invariant either $(0, \frac{1}{2})$ or $(\frac{1}{2}, 0) \cdot (t + 1)$ or $(\frac{1}{2}, \frac{1}{2}) \cdot t$ for some $t \in \mathbb{N}$. The separable subspaces of Q_3 have *w*-invariant either $(\frac{1}{2}, \frac{1}{2})$ or $(\frac{1}{2}, 0) \cdot (t + 1)$ or $(0, \frac{1}{2}) \cdot (t + 1)$ for some $t \in \mathbb{N}$. Therefore, every common separable subspace of Q_1 , Q_2 and Q_3 must have *w*-invariant $(\frac{1}{2}, \frac{1}{2})$. Therefore, for any Q_4 with $w(Q_4) > (\frac{1}{2}, \frac{1}{2})$, the four algebras do not share any maximal subfield. Such Q_4 exists, for instance $Q_4 = [x^{-2}y^{-1}, y)$.

4. Open questions

- Is $\mathbb{F}_p^{sep}(x, y)$ not 4-linked for odd p?
- Are there fields which are 4-linked and not 5-linked?
- Over $\mathbb{C}(x, y)$, every two cyclic algebras of degree 3 share a common subfield. Does that extend to higher degrees?
- In a more recent preprint, I showed that for any odd prime p, there exist p^2 cyclic algebras over $\mathbb{C}(x, y)$ with no common maximal subfield. Can this number be reduced?